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A soft-sphere, inverse-12 liquid is simulated in both the isokinetic-isochoric and 
the isokinetic-isobaric ensemble using nonequilibrium molecular dynamics. The 
simulation for the isobaric ensemble is discussed in detail. The non-Newtonian 
characteristics of the liquid are clearly demonstrated; namely, the shear-rate- 
dependent pressure and density (shear dilatancy), the shear-rate-dependent 
shear viscosity (shear thinning), and evidence of normal pressure differences. 
For the first time, it is clearly shown that a significant component of isobaric 
shear thinning is due to shear dilatancy. The isochoric and isobaric results are 
checked for consistency. Simple empirical relations for the equation of state and 
transport prdperties of the fluid are presented. 
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1. I N T R O D U C T I O N  

Non-Newtonian molecular dynamics has played a major role in recent 
studies of the physics of liquids. (1'2) The concept of the approach is 
simple(2~4): since thermophysical properties of a system are insensitive to 
the details of the microscopic trajectories of the atoms or molecules in the 
thermodynamic limit, many sets of equations of motion can give identical 
and correct thermodynamic averages. Accordingly, we have the freedom to 
construct a simulation based on those equations of motion that are of the 
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most convenient for a particular problem. These equations will in general 
not be Newton's of the isolated microcanonical ensemble. 

The power and versatility of non-Newtonian molecular dynamics are 
most obvious from the results obtained from nonequilibrium molecular 
dynamics (NEMD).  Using NEMD,  we and other authors have shown that 
a simple liquid is not simple at all when subjected to a shear and has 
rheological characteristics and behavior more often associated with fluids 
of complex structure. Examples are shear-rate-dependent viscosity coef- 
ficients and evidence of normal pressure differences in a sheared fluid. (2'5)'3 

The object of this paper is to present a precise self-consistent set of 
simulation data for the rheological and equilibrium properties of a typical 
simple liquid, and the soft sphere was selected as the model. A feature of 
the work is that we report consistent data from the isokinetic-isochoric and 
the isokinetic-isobaric ensemble. 17'8) We define isokinetic as the constant 
kinetic temperature constraint. The isobaric molecular dynamic simulations 
are new. 

2. S I M U L A T I O N  

We consider an N-particle inverse-12 soft-sphere liquid at a constant 
temperature T in volume V as a function of the soft-sphere state point x. 
The state point is defined by x = pff3(~/kT)l/4, where a and e are the usual 
potential parameters, and p is the density; p=N/V. The potential 
parameters, the mass m, and the temperature are set to unity; hence x = p. 
The simulation is set up to represent the liquid in stationary planar 
Couette flow subjected to a shear rate 7. The pressure p and shear viscosity 
r/+ are evaluated as a function of density and shear rate in the isokinetie- 
isochoric ensemble; and the density and shear viscosity are evaluated as a 
function of pressure and shear rate in the isokinetic-isobaric ensemble. We 
also evaluate viscosity coefficients that represent normal pressure differen- 
ces in the fluid. As is the usual practice, all variables are dimensionless. 

The operational definitions of the variables at a given density are as 
follows. The temperature, 

3Nk, T= Z p~/m (1) 

where kB is Boltzmann's constant and Pi is the peculiar momentum of 
particle i. 

3 See Ref. 6 which reports the proceedings of a conference on nonlinear phenomena held in 
Boulder, Colorado in 1982. 
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The pressure tensor P, defined by the equation 

P V :  Z p~pffm + Z qiF~ (2) 

where Fi = Y', 8(~u/Sr ~, with ~b = 1/r 12. 
The hydrostatic pressure, given by 

P(7) = (1/3) tr P (3) 

The shear viscosity evaluated from the constitutive relation 

Pxy = - - ~  + (~))'~ ( 4 )  

with the strain rate defined as 7 = 8ux/Sy. Note that we allow the pressure 
and viscosity to be shear rate dependent. 

Following Hess (9) and Hess and Hanley, (1~ viscosity coefficients are 
defined to account for normal pressure differences 

71 (7)y= - ( e x x  - Pyy) (5) 

and 

r/o(7)7 = - [Pzz - �89 + Pyy)] (6) 

2.1. Equations of  Mot ion  

The isobaric-isokinetic equations of motion for particle i in the system 

(]i = P i+  ~qi + iTqyi (7) 
m 

0i = F~ - iPi - iTpy~ -- ~p~ (8) 

where i is the unit vector in the x direction. The term ~ is a thermostatting 
multiplier which, for the Gaussian isokinetic equations of motion, is given 
by 

Fi" Pi -- ~ ~ Pxi " Pyi 

= Z Pl "P~ (9) 

The dilation rate, i = de/dt, acts as a volume control to constrain the 
pressure and can be evaluated as follows. Consider the pressure in terms of 
Eq. (2), 

3 p V =  ~ p~ .pi /m+ Z qi * F  i 

1 
= ~ P , ' p i / m -  5 Z q o ' F ~  (10) 

under shear can be written as 
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The time derivative of this equation is 

3pfZ+3f~V=~2pi Pi 1 ~ j [  .(OF//. ) ]  " m - - 2 ,  , ~tij'ViJ+qiJ \~qij (]ij (11) 

However, the second term on the left-hand side is zero at constant 
pressure, and the first term on the right-hand side is zero at constant 
temperature. For the spherically symmetric potential 0, 

3p12= - ~  e~j .F  0 

= - 2  i~s ~1//'F// 

which reduces to 

+ q0" \ ~q~ 

_ F 0 b i  qijq~ - 0 , j  + q / / ' / = -  --~- " "qiJ 
L q// q~  k q ~  

(12) 

t! 3p12= - ~  ~ [~lu "F//+0u(q//"/Lj)] (13) 
i v ~ j  

On substitution into the equations of motion with the relation 

V=3~V (14) 

and the definition 

we get the expression 

! 

t /  r 0,j + 0// (15) 
% 

1 i ,,6, 

The pressure constraint sets the time derivative of the pressure to zero, 
rather than constraining the pressure itself to a particular value. Thus, to 
simulate the system at a given pressure, we introduce the Newton-Raphson 
procedure to alter the volume until the pressure is constant at the desired 
value to within specified limits. Further, the pressure and temperature drift 
slowly with time because of numerical inaccuracies. Hence, we have to to 
rescale occasionally, typically every 25-100 timesteps, before the drift has 
become appreciable. The pressure is rescaled using the Newton-Raphson 
technique, while the temperature is rescaled using simple velocity rescaling. 

The difficulties can be avoided with a Nos6-Hoover feedback 
procedure.(ll.12) The time derivative of a feedback variable is related to the 
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difference between the value of the variable at a given time step and the 
desired or targeted value. The feedback variable is the pressure for an 
isobaric simulation, and the time derivative is proportional to the dilation 
rate. We write 

1 
~' = ,,~-- ( P  - -  Ptarget) ( 1 7 )  

p~ 

where Qp is a damping constant. Note that this constraint does not fix the 
pressure, but constrains it to fluctuate about the desired value. There is 
no prescription for choosing a value for the damping constant but, 
fortunately, we have found that the average values of the properties of 
the system are only weakly dependent on it. ~3) Based on trial and error, 
we fix Qp a t  10. It was found in practice that there was no significant 
difference in the simulation results if either Eq. (16) or (17) was used to 
constrain the pressure. 

2.2. Procedure 

The system studied consisted of 256 soft spheres interacting with an 
inverse-12 potential, truncated at rc = 1.5a. Runs were carried out with a 
reduced timestep At=0.004 for the smaller shear rates (7~<1.0) and 
At = 0.002 otherwise. The runs varied in length from 2 million timesteps for 
the larger shear rates to 25 million timesteps for the smallest shear rate 
studied, 7 = 0.0625. The calculations were performed using a neighbor list 
algorithm similar to the one described by Fincham and Ralston (14) with 
complete vectorization of the forces loop, including the force summation. 

Calculations were carried out at state points in the range 
0.8485 < p < 1.0607, where the freezing density of the 256-particle system is 
1.15, and for the equivalent reduced pressures, 8.143 < p < 17.0. Data were 
taken for the system in equilibrium (7--0),  and when subjected to a shear 
in the range 0 .64<7 < 1.55. The shear-rate range was extended at the 
density of 0.9899 since this particular state point corresponded to that 
selected in our previous work. (7'1~ 

3. RESULTS 

3.1. Pressure-Density 

Figure 1 shows a plot of the pressure as a function of shear rate at 
constant density. One observes the 73/2 dependence as reported in earlier 
work. (5'1~ Figure 2 shows the corresponding curves in the isobaric ensem- 
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Fig. 1. 

20 
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Plot of the pressure p and shear rate for the dense, soft-sphere liquid at several 
densities. The freezing density is 1.15. The pressure varies as 73/2 . 

ble: again the ~3/2 dependence is clear. We estimate the data to be precise 
to 0.01%. 

The equilibrium data were compared with the data, taken over a wide 
range of state points reported by Hoover  et al. (as'x6l, and other authors, (1~ 
summarized in ref. 17. 4 A sample comparison for the equilibrium com- 
pressibility factor is given in Fig. 3. The new results are lower, although 
well within the estimated precision of all data sets. 

The results here were fitted to simple polynomials consistent with the 
smoothing equations in ref. 17, 

P e q = p T * ( 1 . O + 3 . 3 1 7 6 9 * p - O . 6 8 5 2 4 4 * p 2 + l O . 1 3 1 1 5 3 * p  3) (18) 

p~ = p T  * (0.092405 * p + 0.074186 * p2 + 0.432951 * p3) (19) 

P = Peq "k p y  * 73/2 (20) 

4 See ref. 17, Eqs. (44~(47) .  Note  the misprint  in Eq. (45): for 0.2982 read 0.02982. 

1.I 
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Density at constant pressure 

Fig. 2. 

0.8 

05 i 2 

Plot corresponding to Fig. 1 showing  the variat ion of  density with y3/2 at constant  
pressure. 
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Fig. 3. Compar ison of the equilibrium compressibility factor at high densities. The data are 
compared with those from previous work of Hoover and of Hanley represented by the 
smoothing equation in ref. 17. 

Expressions for the density as a function of pressure are given in the 
Appendix. Note that Eqs. (18) and (19), and the equations in the 
Appendix, are merely fitting functions; they extrapolate correctly to zero 
density, but are not exact for the moderately dense gas. A detailed discus- 
sion on the second and third virial coefficients of the soft-sphere gas is 
given by Rainwater. (is) 

Fig. 4. 
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Evaluation of Eq. (21) at various shear rates Percent deviation is defined as 
(lhs - rhs) * 100/lhs. 
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Since the pressure is a function of density and shear rate, we have 

( a P l a 7 ) : .  T = - ( a p / a p ) y .  T (ap/a~:)p,  r (21) 

This relation was checked and the result shown graphically as Fig. 4. There 
is some systematic error; the bow deviation pattern as a function of density 
is due to large uncertainties in the derivative (~p/f~:)p, T that is close to zero. 
The spread at constant density is due to errors in (~p /ap ) , : ,  r. Nevertheless, 
the check is considered satisfactory based on our experience in fitting 
experimental equation-of-state and thermodynamic data, and does not 
warrant adjusting the simple functions forms or the coefficients of Eqs. 
(18)-(20). 

3.2. Shear Viscosity 

Figures 5 and 6 show the variation of the shear viscosity with shear 
rate at constant density and pressure, respectively. We have assumed a 71/2 
dependence as in most previous studies, although the constant-density plot, 
in particular, is not entirely consistent with this assumption over all 7. In 
view of the errors in the data, assessed as 0.5 %, and a consistency check 
from the expression 

( ~ r l + / O ~ ' ) p , r = ( & l + / ~ 3 p ) r , T ( 3 p / O T ) p , T + ( & l + / 3 7 ) p , r  (22) 

the 71/2 dependence is justified. Equation (22) is satisfied to within 12% or 
better. 

3.0 

2.5 

q+ 

2.0 �84 

1.5 

rl+ at constant density 

1.0 
0.0 0.5 1.0 1.5 ~/i/2 

Fig. 5. Variation of the shear viscosity t/§ with yl/2 at constant density. Legend as in Fig. 1. 
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Fig. 6. 

rl+ 
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2.5 

2.0 �84 

1.5 

rl+ at constant pressure 

1.0 
0.5 1.0 1.5 ~/1/2 

Variation of the shear viscosity with 71/2 at constant pressure. Legend as in Fig. 2. 

The isochoric data were compared to previous results of Ashhurst and 
Hoover, (19) Hess and Hanley, (1~ and other authors. (6) The Newtonian 
viscosity at zero 7 agreed well, but the 71/2 dependence of our data was 
slightly weaker than that observed previously. Using data from the 
smoothing equations in ref. 17 to ensure a well-behaved function at the 
lower densities, one finds the zero-7 viscosity to be represented by the 
expression 

q+=0--0.171 + 0.025604 �9 [exp(46.579 �9 p ) -  1.0] (23) 

Equation (23) is proposed only to give a fit of the data. It does not give 
the correct moderately dense behavior, for example/2~ The shear-rate 
dependence is represented by simple equations given in the Appendix. 

3.3. Normal Pressure Differences 

The coefficients defined by Eqs. (5) and (6) are displayed as Figs. 7-10. 
They are well-behaved functions of the shear rate, but the low-7 behavior 
is uncertain. We have found repeatable negative values at low 7 for the 256- 
particle system (and for the 56- and 108-particle liquids), but it is unclear 
if corresponding negative values would be found for a larger system. 
Excluding these points, we estimate the uncertainty in the coefficients to be 
6 and 3% for t/_ and t/o , respectively. Our expressions for the coefficients 
are given in the Appendix. It is seen that t/ is a very weak function of the 
shear rate, excluding the low-~ points. For this reason, a consistency check 
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r 

] .0 1.5 
7~/2 

Fig. 7. Variation of the normal pressure difference coefficient */_ with 7 */~ at cortstant 
density. Legend as in Fig. I. Negative -;alues at the low ~ are not shown. It is not clear if these 
negative points are realistic. 

from the expression equivalent  to Eq. (22) is no t  reasonable ,  but  the corre-  
spoadir~g check for the coefficient )/o is within 15%,  a very sat isfactory 
result. 

4. D I S C U S S I O N  A N D  C O N C L U S I O N  

We have discussed the quant ia t ive  behavior  of the pressure,  the den- 
sity, and  the viscosity coefficients o f  the soft-sphere model  l iquid when sub- 
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0 .0a  

0.02 - 

0.<30 

Fig. 8. 

r/_ at constant pressure 
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7aa 

Variation of */_ with ~/2 at constant pressure. Legend as in Fig. 2. 
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0.20 qo at constant density 
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Fig. 9. Variation of the normal pressure difference coefficient qo with In 7 at constant 
density. Legend as in Fig. 1. Negative values at the low 7 are not shown. 

jec ted  to a shear. Results  have been presented  graphica l ly  and  represented  
by simple empir ica l  equat ions .  A feature of this work  was tha t  s imula t ions  
were carr ied out  in the i sochor ic  and the i sobar ic  ensembles  and  we have 
demons t r a t ed  that  the da t a  are se l f -consis tent  F o r  the first t ime we have 
a quant i ta t ive  es t imate  of the pressure and  densi ty  dependence  of  the 
coefficients tha t  represent  n o r m a l  pressure differences. 

Hav ing  d a t a  in bo th  the i sochor ic  and  the i sobar ic  ensemble  al lows 
one to check a po in t  tha t  has caused much confusion in the rheology  

1] 0 

Fig. 10. 
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qO at constant pressure 

J 
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0.00 
-0.6 -0.3 0.0 0.3 0.6 

In 7 

Variation of ~/0 with In 7 at constant pressure. Legend as in Fig. 2. 



740 Hood e t  al. 

literature; namely, the difference between shear thinning, the reduction in 
viscosity with increasing shear rate, and shear dilatancy, the increase in 
volume with increasing shear rate at constant pressure. Figure 11 shows the 
viscosity as a function of shear rate for our system at constant pressure and 
at constant density. The important feature to note from this graph is that 
a significant component of the isobaric shear thinning is due to the shear 
dilatancy. This is clear from Eq. (22), but is the first time that such a result 
has been unequivocally demonstrated. 

Since the potential contribution to the energy of an inverse-12 soft 
sphere is trivially related to the potential part of the pressure by E =  4p, 
sufficient information has been given for a comprehensive picture of the 
thermodynamic properties of the fluid. There are now several parallel 
studies of the structure and behavior of inverse-power model fluids in terms 
of simulations of the radial distribution function and the structure 
factor. (17'21'22) Overall, therefore, we have a very complete description of 
the shear-induced behavior of a simple liquid. 

Finally, we remark that numerical thermophysical property informa- 
tion is essential if any physical problem is to be understood. Of relevance 
here, for example, the statistical mechanical mechanics and thermo- 
dynamics of a nonequilibrium system have been a topic of interest (4) for 
some time, but progress and understanding has been slow because many 
results were only formal and could not be verified until recently. (23) Also, 
as Rainwater et al. ~17) have pointed out, if the shear-rate-dependent proper- 
ties of a system are known a priori,  one can approach fluid dynamics and 

2.8' 

- -  2 . 4 "  

2.0" oe) 

0 

1.6 
0 . 0  

0 

0 isochoric 

�9 isobaric 

O 

0 
0 

�9 0 

110 
Sqrt(shear rate) 

Fig. 11. Variation of the shear viscosity with 71/2 at constant pressure and at constant  
density. The graph illustrates that a significant component  of shear thinning is due to shear 
dilatancy. 
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rheology directly. Traditionally, fluid dynamics is approached  by describing 
the mot ion  of the fluid in macroscopic  terms and inferring the properties 
of the fluid after making specific assumptions such as the neglect of 
compressibility. 

APPENDIX  

This Appendix contains simple fitting equations of the soft-sphere 
properties obtained from the simulation. The equat ions are empirical. All 
variables are in reduced units with the reducing parameters  set equal to 
one. 

Densi ty-pressure  with p > 8.143 and 0.64 < V < 1.55: 

Peq = 0.54561 + 0.44763e-1 * p - 0.84681e-3 * p2 

P7 = 0.1309e-2 + 0.13413e-2 * p - 0.399e-4 * p2 (A 1 ) 

P = Peq --/97 * ~3/2 

Shear viscosity-density,  with p > 0.8485 and 0.64 < 7 < 1.55: 

t/~- = 0.11738e+2 - 0.70755e+1 * 7 t/2 

q 1 + = - 0.29903e+2 + 0.17672e+2 * 71/2 
( a2 )  

q ]  = 0.2103e+2 - 0.11390e+2 �9 7 m 

ti+ =ti0 ~ +ti1+ , p + t i +  ,p2 

Shear viscosity-pressure, with p > 8.143 and 0.64 < 7 < 1.55: 

tip~- = - 0 . 4 6 1 8 7  + 0.51493 �9 71/2 

tip+ = 0.25067 - 0.11014 �9 71/z (A3) 

ti+ =t iPf  +tip;- , p 

Viscosity tio and density, with p > 0.8485 and 0.64 < 7 < 1.55: 

tio = 0.40169 - 0.10138e + 1 �9 p + 0.73771 �9 p2 

tio = -0 .3943e-1  +0.11376 �9 p (A4) 

tio -- tio + q2 o , in y 



742 Hood e t  al. 

Viscosity r/o and pressure, with p > 8.143 and 0.64 < ? < 1.55: 

qp~ o = -0 .5152e-2  + 0.90903e-2 �9 p 

qpO = 0.3869e-1 + 0.19342e-2 , p  (A5) 

~/o = qp0 + qpO,  In 7 

Viscosity r/_ and density, with p > 0.8485 and 0,64 < ? < 1.55: 

q o  =0.56677e-1 + 0.32402e-1 * 71/2 

~/~- = - 0 . 2 8 6 2 9 - 0 . 1 0 4 1 9  * 7 I/2 
( a6)  

r/2- = 0.28446 + 0.83314e-1 * 71/2 

r/_ = r / o  +r/~- * p + r / 2  , p 2  

Viscosity r/_ and pressure, with p > 8.143 and 0.64 < 7 < 1.55: 

q P o  = -0 .556e-1  + 0.16509e-1 * 7 I/2 

qp~ = 0.82843e-2 - 0.94301e-3 * ? 1/2 (A7) 

q -  =qPo +qP~- *P 
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